Developing Standards For Quantifying and Analyzing Productivity Claims And The Impact On Construction Auditors
Developing Standards For Quantifying and Analyzing Productivity Claims And The Impact On Construction Auditors

John M. Sier 313-965-2915
John.sier @kitch.com
• Permissive/advisory and not mandatory

• Committee members include several prominent consultants
 • William Ibbs, Ph. D. – Chair
 • Robert D’Onofrio, P.E. C.Eng
 • Paul Stynchcomb
 • James Adrian, Ph.D.
 • William Schwartzkopf, P.E.
 • William Zollinger
 • 18 other members
Divisions

• Introduction and Purpose
• Productivity Basics
• Identifying Productivity Loss
• Establishing Recoverable Loss of Productivity
• Quantifying Productivity Loss
• Avoiding Productivity Loss
• Appendix – Hypothetical project with examples
• Bibliography – containing list of publications on productivity measures and methodologies
Overview

• Written from perspective of claimant/contractor/plaintiff
• Emphasizes the importance of collecting contemporaneous data
• Standards are guidelines
 • Methodology depends on context
 • Not one-size-fits-all
 • Attempt to develop common taxonomy
• Lifecycle of productivity data
 • Collection
 • Storage
 • Verification
 • Analysis
Definitions

• Establishes common definitions for terms
 • Production – measure of output only
 • Productivity – output per measure of input
 • Productivity Index – ratio of actual v. planned
 • Earned Value measure – percent complete

• Establishes tiers and criteria for methodologies
 • Measured Mile
 • Academic and Industry Productivity Studies [surveys]
 • Modified Total Cost
 • Total Cost
Data Collection

• Accurate information critical
• Verifiable and contemporaneous – validated regularly
• Identifiable work segregated by cost account
• Basis of measurement documented
• Changed work tracked separately from base contract
• Create culture valuing data
• Train people to collect and analyze data
• Accurately assign planned hours to activity codes – documentation
• Available data will influence methodology to use
Sample Data Collection Form

Figure 2-1. Activity scope reporting form.

<table>
<thead>
<tr>
<th>INSTALLATION STEPS</th>
<th>DWG REF</th>
<th>Labor Planned</th>
<th>Total Quantity Planned</th>
<th>Material Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Crew Size</td>
<td>Days</td>
<td>Quantity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main Hours</td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment Rental, Totals, Scaffolding, etc.</th>
<th>Days Reg</th>
<th>Cost Day</th>
<th>Amount</th>
</tr>
</thead>
</table>

Remarks:
Identify Productivity Loss

• Establish and monitor measurement control

• Consider factors causing Productivity Loss

• Labor Productivity Reports
 • Planned labor hours from accurate estimate/bid
 • Division of project into definable elements of work
 • Independently and accurately assess progress (units)
 • Charge labor hours contemporaneously
 • Reliable tool/program for calculating productivity

• Consider “accord and satisfaction” wording in change order precluding cumulative impact claims – forecast productivity loss
Recoverable Loss of Productivity

• Actual productivity materially different from planned
• “But for” – causation
 • Logical tie between issue/event and effect
 • Segregate multiple causes
 • Watch for cumulative impacts
 • Isolate productivity loss by issue
• Notice under contract as required
• Each project unique – expert opinion necessary
Methods of Quantifying Loss

- Preferred Order – explain basis for methodology
 - Measured Mile
 - Compare impacted productivity with unimpacted work
 - Same project [ideally]
 - Quantity/time/area-based
 - Periods representative and adequate sample [10% rule of thumb]
 - Occasionally use earned value if productivity data not available
 - Productivity Factors Studies and Modified Total Cost
 - Academic and Industry studies [MCAA/NECA surveys]
 - Modified Total Cost
 - Not possible to use Measured Mile
 - Contractor’s Bid was reasonable
 - Contractor’s incurred costs are reasonable
 - Adjusted to address contractor-caused problems
 - Total Cost – no contractor-caused issues

- Convert hours to dollars and time
 - Consider exchange rates, escalation and burden
Figure 5-2. Effort and reliability of loss-of-productivity quantification methods.
Tiered Approach to Analysis

Figure 5-1. Tiered approach to damage quantification methods.
Note: LOP = loss of productivity.
Avoiding Productivity Loss

• Data Collection – contemporaneous and validated
• Monitoring and Reporting
• Initiate accounting procedures to capture and quantify
• Mitigation of Productivity Challenges
 • Planning and Scheduling
 • Adequate Supervision
 • Change Management
 • Avoid/Limit Productivity Inhibitors [waiting, turnover, accidents, etc.]
 • Additional manpower rather than extended overtime
 • 3-4 weeks of continuous OT show reduced productivity
Documentation is Key

• Role of auditors in validating reliable information
• Assess accuracy of contractor's bid/estimate
• Assess adequacy of time period or sample of “measured” work
• Review labor hours allocated to particular work item
• Segregate Change Order work [language of CO]
• Identify cause and effect
Questions

John M. Sier
Kitch Drutchas Wagner Valitutti & Sherbrook
One Woodward Avenue, Suite 2400
Detroit, MI 48226-5485
313.965.2915
www.kitch.com
john.sier@kitch.com